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We consider the transport of a tracer substance through a system consisting of 
a tube containing flowing fluid surrounded by a wall layer in which the tracer is 
soluble. The fluid moves with either a Poiseuille or a uniform flow profile, and 
the outer boundary of the wall layer is either impermeable to tracer or absorbs it 
perfectly. The development of dispersive transport following the injection of tracer 
is described in terms of three time-dependent effective transport coefficients, viz. the 
fraction of tracer remaining in the system, the apparent convection velocity and the 
dispersion coefficient; the last two are defined in terms of the rates of change of the 
mean and variance of the axial tracer distribution. We assume that the timescale 
for tracer diffusion across the wall layer is much larger than that for diffusion 
across the flowing phase, and derive an asymptotic approximation corresponding to 
each timescale. Numerical results are given to illustrate sensitivity to the physical 
parameters of the system. It is shown that if the coefficients are based on tracer 
concentration in the fluid phase alone, as in previous work, paradoxical behaviour, 
such as negative apparent convection velocities, can result; we therefore base our 
results on averages of concentration over both phases. On the shorter timescale (the 
same timescale over which Taylor dispersion develops) at leading order it is found 
that the influence of the wall layer can be characterized by a single dimensionless 
parameter, and that conditions at the outer boundary have no effect. In many cases 
transport is also rather insensitive to the form of the flow profile. On the longer 
timescale, at leading order the influence of the wall layer is characterized by another 
dimensionless parameter, and unless uptake is very small diffusion within the layer 
is the rate-determining process; consequently transport is independent of the form of 
the flow profile. A further important conclusion is that the usual effective convection 
and dispersion coefficients, based on spatial moments, are of little use in predicting 
the time-varying concentration at a fixed position, because the spatial concentration 
profile becomes Gaussian only over the longer timescale. 

1. Introduction 
In this paper we consider theoretically the time-dependent transport of a tracer 

substance, by convection and diffusion, in a system consisting of a tube containing 
a flowing fluid surrounded by a stationary annular wall layer in which the tracer 
is soluble but diffuses much more slowly than in the fluid. The outer boundary of 



374 C. G. Phillips, S .  R. Kaye and C.  D.  Robinson 

the wall layer is considered either to be impermeable to the tracer, or to absorb it 
perfectly. In addition to convection arising directly from the movement of the fluid, 
the tracer experiences dispersion, i.e. an enhanced effective diffusivity in the direction 
of flow, both as a result of the non-uniformity of the flow field, and due to the 
exchange of the substance with the wall layer. 

In its most general form the problem of transport through a medium composed 
of both a flowing fluid and a stationary component in which diffusion is restricted 
is relevant to a very wide range of transport processes. For example, the fluid can 
be either gas (when the stationary layer could be a liquid lining) or liquid (when 
it could be a gel layer), and the mathematical formulation is applicable not only 
to mass transport, but also to heat (when the flowing phase could be a liquid, and 
the stationary phase a solid of relatively small thermal diffusivity). Such systems 
occur commonly in chemical engineering, where tubular geometries are used in gas 
and liquid chromatography and other separation processes. In biology, the same 
mechanisms are responsible for the transport of soluble gases in the airways of the 
lung, which will be discussed further below, and of solutes in blood vessels. An 
accurate model of transport in blood vessels is desirable both for the understanding 
of normal physiological function (cf. the Krogh ‘tissue cylinder’ model for transfer 
from capillary vessels) and for the interpretation of experimental methods (e.g. the 
thermal-dye dilution technique). 

The basic process of solute dispersion as a result of diffusion in, and convection 
by, Poiseuille flow in a tube with impermeable walls was originally studied by Taylor 
(1953, 1954) and Aris (1956). After a timescale much larger than that required for a 
tracer molecule to diffuse across the tube, the solute distribution was found to move 
along the tube with the same average speed as the fluid, and to spread axially with an 
apparent diffusion coefficient greater than its true (molecular) value. This coefficient 
was expressed as the sum of two terms, the first reflecting the effect of axial convection 
combined with radial diffusion (because each solute molecule diffuses through regions 
of fluid moving with different speeds) and the second resulting directly from axial 
diffusion. Aris later (1959) considered dispersion in a system with annular geometry, 
containing both a flowing phase and a stationary phase in which the tracer is soluble. 
The apparent axial diffusion coefficient at long times contains convective and diffusive 
components, consisting of weighted averages of contributions from the two phases, 
together with a third term resulting from the presence in Aris’s model of a resistive 
barrier to exchange between the phases. Both Taylor’s and Aris’ solutions are for 
the steady value of the dispersion coefficient at long times, which we shall refer to as 
‘fully developed’ dispersion. 

The time-development of dispersion has most commonly been studied by calculating 
the evolution with time of the axial moments of the tracer concentration following 
its injection into the flow. Thus, Gill & Sankarasubramanian (1970) considered 
the development of Taylor-Aris dispersion, calculating a time-dependent ‘dispersion 
coefficient’, equal to half the rate of change of the variance of the axial tracer 
concentration profile. For application in a model of the bronchial tree, Davidson & 
Schroter (1983) calculated the rates of change of both the mean and variance, based 
on averages of concentration in the fluid phase, in a two-phase system in which the 
fluid moves with Poiseuille flow, and there is a stationary wall layer surrounded by 
an impermeable outer boundary. More recently, Shankar & Lenhoff (1991) have 
calculated tracer concentration profiles as a function of space and time for the same 
system (but neglecting axial diffusion), for cases where the timescales for diffusion 
across the fluid phase and the wall layer are comparable. 



Time-dependent transport by convection and difusion 375 

In many applications, including biological systems such as the bronchial airways 
or the vascular tree, transport takes place through a network of branching tubes, 
each of which may be only a few times longer than it is wide. As a result, in 
addition to dispersion itself not being fully developed, the flow field within each tube 
is developing and cannot be described by Poiseuille’s solution. Another complication 
in biological applications is the possible removal of tracer from the system, for 
example by the capillary blood vessels surrounding arteries and airways. For fully 
developed dispersion, some of these effects have been addressed theoretically. For 
example, Arid (1956) formulation for dispersion in a single flowing phase dealt, in 
principle, with an arbitrary (but axially invariant) velocity profile. The case where 
tracer is (irreversibly) absorbed at the outer boundary of a single flowing phase, at 
a rate proportional to the local concentration, has been studied by several workers, 
either for fully developed dispersion or at long times (e.g. Sankarasubramanian & 
Gill 1973; Lungu & Moffatt 1982; Smith 1983). A more general boundary condition 
incorporating history-dependence was used by Purnama (1988), who calculated the 
fully developed dispersion coefficient (this formalism could be used to describe the 
effects of the wall layer considered in the present work). Despite these treatments, for 
transient dispersion as opposed to the fully developed process, the effects of tracer 
absorption and desorption by a wall layer, and the sensitivity to the flow profile, are 
poorly understood. 

The objective of this paper is to investigate the dominant mechanisms and timescales 
in the transient transport of a tracer by convection, diffusion and exchange with a 
stationary absorbing medium, and to evaluate its sensitivity to the physical parameters, 
the form of the flow field and the boundary conditions imposed. In order to do so 
we consider a model system similar to that of Davidson & Schroter (1983), in 
which a tube containing moving fluid is surrounded by an annular, stationary wall 
layer. Tracer is initially distributed within the fluid phase, with an arbitrary axial 
concentration distribution (provided the axial moments defined below are finite) and 
with the concentration assumed uniform within each cross-section. Subsequently it 
diffuses and is convected in the fluid phase, and can be absorbed into (and desorbed 
from) the wall layer, where transport is due to diffusion alone. We consider two 
possible conditions at the outer boundary of the wall layer: a boundary impermeable 
to tracer (as assumed by Davidson & Schroter) and one which absorbs tracer perfectly. 
We also compare the results obtained assuming Poiseuille flow to those obtained for 
a hypothetical situation in which there is a uniform axial fluid velocity. 

In $2 we give the mathematical formulation of the problem, and define three effective 
transport coefficients, which vary as functions of time following the introduction of 
tracer into the flow, viz. the fraction of tracer remaining in the system, an apparent 
convection coefficient, and a dispersion coefficient. These coefficients are defined 
either with reference to the concentration in the fluid phase alone (as Davidson & 
Schroter) or by including the contribution of the wall layer. The full model problem 
is governed by four dimensionless parameters (defined by (2.6)). Our solutions are 
based on the range of parameter values appropriate to the transport of highly soluble 
gases in the human bronchial tree (Davidson & Schroter). For these values, it is 
possible to make simplifying assumptions, which allow perturbation methods to be 
used to derive analytic approximations to the solution (in §3), rather than solving 
the full problem numerically. The primary assumption is that the tracer takes much 
longer to diffuse across the wall layer than across the Auid-filled tube, which means 
that the development of dispersion takes place over two widely separated timescales, 
for each of which a simplified approximate solution exists. Furthermore, we assume 
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that the wall layer is sufficiently thin that its curvature can be neglected, and that 
uptake of tracer by the wall layer is not so small that transport in the fluid phase 
is rate-determining (see $3.3). As well as simplifying the mathematical problem, this 
approach has the virtue of revealing clearly the dominant physical mechanisms that 
operate, and the dimensionless parameters that govern them. Numerical results are 
given in $4, and in $5 the results are discussed, and the relationship with previous 
studies and implications for future work are considered. 

2. The general problem 
2.1. Formulation and dejnition of transport coeficients 

Denote the tracer concentration by C and time by T ,  and use (dimensional) cylindrical 
polar coordinates with 2 representing axial, and R radial, distance. Assuming that 
the initial concentration and the velocity profile are axisymmetric, the governing 
equations in the fluid and the wall layer respectively are 

- ac + V(R)- ac = D { R-’- ( R- ::) + 7 :5.”) for O <  R < a ,  (2.la) 
aT az 

(2.lb) 

in which V(R) is the axial fluid velocity, a is the radius of the tube, h the wall layer 
thickness, and the diffusion coefficient of the tracer is denoted by D for the fluid 
and D, for the wall layer. The boundary conditions at the interface between the two 
phases are 

in which p is the ratio of the tracer concentration in the wall phase to that in the 
fluid phase at equilibrium. Note that we assume there is no resistance to the exchange 
of tracer at the interface, so that the concentrations in the fluid and wall phase are 
locally in equilibrium. The existence of a resistive barrier at the interface would 
further complicate the results (cf. Aris 1959). 

The problem of heat transport is mathematically equivalent to that of mass trans- 
port, and is obtained if C represents temperature, D the thermal diffusivity and /3 is 
set equal to unity, since the temperature is continuous across the interface with the 
wall layer. 

The solution is required to be regular on the tube axis (R = 0), and an additional 
boundary condition is required at the outer boundary of the wall layer (R = a + h). 
In the present work we consider two extreme cases. The first, 

corresponds to an impermeable boundary outside the wall layer (this is the boundary 
condition used by Davidson & Schroter 1983); the other, 

c lR=a+h = 0, (2.4) 

represents a perfectly absorbing boundary outside the wall layer. Since the problem is 
linear, the effective transport coefficients defined by (2.11)-(2.13) below do not depend 
on the initial concentration distribution in the fluid phase, provided it is independent 
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of R.  It is therefore sufficient to solve the problem for the initial condition 

(2.5) 
which represents tracer uniformly distributed over the cross-section of the fluid phase 
at 2 = 0; M is the total mass of tracer present initially, 6 is the Dirac delta function 
and 8 is the Heaviside function. 

We define four dimensionless parameters 

1 = D,/D,  IC = (Dw/D)’ /2p ,  P = Voa/D, t. = h/a ,  (2.6) 
in which VO is the average axial fluid velocity; 1 is the ratio of the diffusion coefficient 
in the wall layer to that in the fluid, P is the PCclet number, which expresses the 
strength of convection relative to that of diffusion in the fluid, e reflects the importance 
of the curvature of the wall layer, and IC, which we shall refer to as the dimensionless 
absorption parameter, incorporates both the ratio of tracer concentrations across the 
interface and the ratio of the diffusion coefficients in the wall layer and fluid. The 
governing equations and boundary conditions are non-dimensionalized by defining 
the variables 

c = nPa3C/M,  r = R/a ,  z = Z / P a ,  t = DT/a2 ,  (2.7) 

in which time is non-dimensionalized with respect to the timescale for diffusion across 
the interior of the tube. Note that the lengthscales used to non-dimensionalize the 
radial and axial variables are different. In terms of these variables the governing 
equations and boundary conditions become 

(2.8a) 
a z c  

at a Z  ar a ( ;:) a22 

ac 
- + v ( r ) -  = r- - r -  + P - ~ -  for o < r < 1, 

in which u(r)  = V(R)/Vo is the dimensionless axial fluid velocity. The non-dimensional 
boundary and initial conditions are 

Following earlier workers (e.g. Aris 1956), we characterize tracer transport by cal- 
culating coefficients defined in terms of the axial moments of the tracer concentration. 
In order to do so, we define the dimensionless integrals, with respect to r and to both 
r and z respectively, over the fluid and wall phases by 

I+€ 00 

(c)“’(z, t )  = 2 1 c(r,z, t)r  dr, (c)“”’(t) = 1 (c)(r)(z ,  t )  dz. (2.10) 
-m 

The first of these can be split into a radial average over the fluid phase and a further 
integral, with the same normalization, over the wall phase: the normalization is 
such that (c)@’) = 1 initially. It is convenient also to define corresponding integrals 
(. . .)?’ and (. . .)?’ which are confined to fluid-phase and wall-layer contributions 
respectively. 

The effective transport coefficients are defined in terms of the axial moments as 
follows. The fraction of tracer remaining in the system (i.e. including both fluid and 
wall phases) is 

q( t )  = (c)@”)(t). (2.11) 
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Of course, for the impermeable outer boundary condition q is identically equal to 
1. For the perfectly absorbing outer boundary condition, q stays close to 1 as long 
as the fraction of tracer reaching the outside of the wall layer remains small. The 
apparent convection velocity of tracer, defined as the rate of change of its mean axial 
position, is Vou(t), where 

u(t)  = - d ( ( z ~ ) ( ' ~ ~ ) ( t )  ) . 
dt (c)""'(t) 

(2.12) 

The dispersion coefficient, defined as half the rate of change of the axial variance of 
the tracer distribution, is Dk( t ) ,  where 

k ( t )  = fP2-& d { ( z2c) (rJ) ( t )  - ((  Z ~ ) ( T q ) ( t )  ) 2 }  

( C ) ( ' q  t )  ( C ) ( ' J ) (  t )  
(2.13) 

We find below that the dependence of k ( t )  on the Pkclet number P can be expressed 
by writing k ( t )  = P2k,(t) + kd(t) ,  in which the term containing k, is the convective 
component of the dispersion coefficient and kd is the diffusive component. The 
former corresponds to Taylor dispersion, and results from the distribution of tracer 
between regions of the system moving with different velocities (it is therefore strongly 
influenced by absorption by the stationary wall layer); the latter was simply equal to 
unity in Aris' (1956) treatment, but is now also modified by exchange between the 
phases. 

Note that the integrals defined by (2.10), and consequently the resulting effective 
transport coefficients, differ from those used by Davidson & Schroter (1983), which 
were confined to the fluid phase. For purposes of comparison, we define analogous 
quantities q f ,  uf, kcf and k d f  in terms of integrals over the fluid phase alone. 

2.2. Solution for  axial moments of concentration 
To solve for the transport coefficients q, u and k we apply to the tracer concentration 
a Laplace transform with respect to time and a Fourier transform with respect to 
axial distance. The combined effect of these two transforms is denoted by an overbar, 
viz. 

c(r, p ,  s) = J" Je c(r, z ,  t )  exp(-st - ipz)dt dz. (2.14) 
-a3 0 

From (2.8a,b), the governing equations for C are 

( r g )  = {s + ipu(r) + P- 2 2 -  p }c - 1 for 0 < r < 1, (2.15a) 
dr 

(2.15b) 

The axial moments required to evaluate the transport coefficients from (2.1 1-2.13) 
may be deduced by calculating the first three terms of a series development of the 
form 

(2.16) 

(a similar small-p expansion of the axial Fourier transform was used by Lungu & 
Moffatt (1982) in their study of the fully developed dispersion of heat in a duct 
with a conducting wall); note that this expansion is valid for arbitrary P: in general 

E(r, p, s) = Co(r, s) - ipcl(r, s) - ip2 { ~20(r ,  s) + P-2~21(~, s)} + . . . 
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The required axial moments of tracer the coefficients are polynomials in P2. 

concentration are given in terms of radial integrals of these functions by 

(c)“”’(t) = ( C p ( t ) ,  

(zc)“”’(t) = ( C p ( t ) ,  1 (2.17) 

where (ci)(r)(r) denotes the inverse Laplace transform of ( C i ) ( r ) ( ~ ) ;  equivalent equations 
relate the corresponding integrals of c over the fluid phase alone. 

We obtain solutions for the integrals (c i ) ( l )  for two different axial flow profiles. In 
the first case, Poiseuille flow, denoted by a superscript p, the flow profile is 

u(P)(r) = 2(1 - r2).  (2.18) 

In the second case, in order to assess sensitivity to the flow profile, we repeat the 
calculation with a uniform axial flow, denoted by a superscript u, giving simply 

u(“)(r) = I. (2.19) 

(Note that (2.15) can be solved exactly for C when the flow is uniform.) 
The governing equations that apply to the functions Zi are obtained by substituting 

the series form (2.16) into equations (2.15). For l o ,  El  and E20 the governing equations 
for 0 d r < 1 are 

and those for 1 < Y < 1 + e are 

(2.204 

(2.20b) 

(2.204 

(2.21) 

Each li is regular at r = 0, and satisfies boundary conditions corresponding to those 
in (2.9) at the interface Y = 1 and either (2.3) or (2.4) at r = 1 + e. As a consequence 
of (2.9), the boundary conditions for these three functions at the outer boundary of 
the fluid can be expressed as 

= -xGs1/2Cilr=1- for i = 0,1,20, 

where 

(2.22) 

(2.23) 

By solving (2.21) for Ci, G(s) can be expressed explicitly in terms of modified Bessel 
functions. 

By using (2.21) together with (2.23) and the interface conditions in (2.9), we find 
that for these three functions the fluid-phase integrals are related to the integrals over 
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(Ei)?) = (Ci ) ( ' )  - 21cG( 1 - H)s-'/ZCi(r=l- for i = 0,1,20, (2.24) 
where the function H is defined by 

r=l+  r=l+e 

(2.25) 

Like G(s), H ( s )  can be expressed explicitly in terms of modified Bessel functions. 
The situation is slightly more complicated for the function C21 ,  owing to the effect 

of axial diffusion in the wall layer, which makes its first appearance at this order. The 
governing equations are 

(2.26~) 

(2.26b) 

with boundary conditions at r = 0 and 1 + E, and conditions at the interface r = 1, 
equivalent to those for the other Ei. By differentiating (2.20~) and (2.21) with respect 
to s, we find that C 2 1  can be expressed in terms of CO and iX,/ds. 

It is seen immediately from (2.20), (2.26) that CO and 221 are independent of the 
fluid velocity profile. Explicit solutions for all the Pi  can be obtained, and the required 
radial integrals evaluated, in terms of modified Bessel functions by a straightforward 
but lengthy procedure. Appendix A gives the resulting expressions for the quantities 
(Ci ) ( ' )  and Eilr=l- for both Poiseuille and uniform flow. From these, expressions for 
(C,)?' can also be obtained using (2.24). 

3. Asymptotic solution for a thin wall layer with a long diffusion timescale 
3.1. Assumptions 

The formulation of 92 makes no assumption about the relative sizes of the physical 
parameters governing the problem. The resulting solutions in Appendix A describe 
the time-development of the first three axial moments of tracer concentration for 
any values of the wall layer thickness h, and the ratios p, of tracer concentrations, 
and A, of diffusion coefficients, across the wall layer-fluid interface. In principle these 
solutions for the Laplace transforms (C,)") can be inverted in the form of infinite series 
to give the transport coefficients defined by (2.1 1)-(2.13), but the resulting expressions 
are impracticably complicated. Instead, in the remainder of the paper we consider 
the case where the wall layer thickness is thin compared with the radius of the tube, 
i.e. E is asymptotically small, but the dimensionless quantity defined by 

(3.1) [ = = hDl/2/aD1/2 
W 

is large. The square of this quantity represents the ratio of timescales for diffusion 
across the wall layer and the interior of the tube. Because this ratio is assumed to 
be large, the development of tracer transport takes place over two distinct timescales, 
the shorter of which is represented by the dimensionless time t defined in (2.7), and 
the longer by the rescaled variable 

t = C 2 t  = Dw T/h2 .  (3.2) 
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Our choice of parameters broadly follows Davidson & Schroter's (1983) study of gas 
transport and uptake in the bronchial tree. These essentially satisfy the assumptions 
above, since they have e = 10-1 and 1 = 

As stated above, we consider two possible boundary conditions at r = 1 + E, cor- 
responding firstly to a boundary which is impermeable to tracer (2.3) and secondly 
to one which is perfectly absorbing (2.4). With the assumption that e is small, the 
curvature of the wall layer can be neglected, and we find from (2.23) that 

so that 8 = 10. 

tanh(o1l2) (impermeable), 
coth(o1I2) (perfectly absorbing), 

G(s) = 

in which 
= e 2 p s  = e2s  

is a version of the Laplace transform variable rescaled to correspond to T. 
Similarly, from (2.25) 

(impermeable) 
sech(o'/*) (perfectly absorbing). 

H ( s )  = 

(3.3) 

(3.4) 

(3.5) 

Since we assume that both E and 1 are small, axial diffusion of tracer in the wall 
layer, which by inspection of (Al)  results only in a small modification of kd, can 
be neglected. In its absence, note also that E r )  = iC21;  this means that the diffusive 
component of the dispersion coefficient, kd, is equal to the apparent convection velocity 
due to uniform flow, u(') (whether averages are based on the fluid phase alone, or 
on both phases). As a result the number of independent transport coefficients to be 
calculated is reduced: there are five in general, and for averages over both phases 
with the impermeable outer boundary condition there are only four, because q = 1. 

With the assumptions above, in $3.2 we derive short-time approximations for the 
axial moments of tracer concentration, based on averages over both phases. Then, 
assuming also that K is not as small as d-3, in $3.3 we derive approximate long- 
time solutions (the effect of this additional assumption is that the fully developed 
dispersion rate is dominated by exchange with, and diffusion within, the wall layer). 
The corresponding results for averages confined to the fluid phase are given in 
Appendix B. 

3.2. Short timescale 
On the short timescale, over which transport in the fluid phase develops, only an 
exponentially small quantity of tracer diffuses to the outside of the wall layer. As a 
result the leading-order short-time solution is the same whichever boundary condition 
is applied at this surface. In addition, since we assume that E is small, the solution 
is also insensitive to the curvature of the wall layer. (In fact, since 1 is also assumed 
small, even in the presence of a thick wall layer the curvature would remain negligible 
until a large time, of order L-', had elapsed.) 

The solution for the short timescale is most directly obtained by taking the limit 
Iz + 0 with s fixed in (3.3), (3.5). Provided that the real part of s1i2 is positive, this 
gives G -+ 1 and H + 0. These values of G and H are therefore substituted into 
(A l)-(A4) and in the resulting expressions s1/2 is defined by stipulating a branch cut 
along the negative real axis. The Laplace transforms are inverted by first subtracting 
out the parts that are singular as s + 0 for separate inversion, then deforming the 
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contour of integration in the normal manner around the branch cut. This gives 
( C o y r )  = 1, ( 3 . 6 ~ )  

C. G. Phillips, S. R. Kaye and C. D. Robinson 

71-1/2 -1 1/2 - i ( K - 2  - 2 (cy))"' = K t  5 )  

( $ ) ) ( r )  - 1 (c2,)(r)  = n-1/2 -1 1 /2  - +(K-2 - 1 

( C g y  24K I t  8 36 30 

+ K - ~ K  la{ - 8 ~ - ~ / ~ E - ' ( y ~ / ~ /  + 2 f ) $ '  + f ~ - ~ y - ~ / '  e-yldy, (3.6b) 1 
- 3  K t  2)  

+7c- lK  lm (-2y-5/2~-1/12 + ;K-2y-3/2 ) e-Ytdy, ( 3 . 6 ~ )  

= fK-2t - 7c-1/2(K-3 - 19 -1 1/2 + 3(K-4 - 49K-2 + L )  

+Z-'K lm{ y-"/2E-'A(P) + y-5E-2Ay) - i ( K - 4  - -2 -3/2 e-Y'dy, (3.64 
1 24K ) y  } 

( c ( u ) ) ( r )  = +-2t - n-1/2(K-3 - 4 -1 1 / 2  + ?( -4 - K-2 + 1) 
20 K )t 8 K  9 

+ . - 1 ~ l ~ {  y-7/2,3-'Ay) + Y - ~ E - ~ A ' " )  - i(16-4 - ; ~ - ~ ) y - 3 / 2  e-Yfdy, (3.64 1 2 2  

in which 

where JO is the Bessel function of the first kind, and the functions A?) are given by 

( 3 . 8 ~ )  

f = . J O ( Y ' / ~ ) ,  f '  = J ; ( Y ' / ~ ) ,  E = ~~f~ + / I 2 ,  (3.7) 

A?) = 32 { 2 y j 2  - 3(y3l2 - 8 4 ~ " ~ ) f f '  - $(y2 + 13y - 1 4 4 ) f 2 } ,  

A!) = -$ ( - K ~ J I ~ / ~ / ~  - 6 ~ ~ y f ~ / '  + { (1 - 21c2)y3l2 - 6 ~ ~ ~ ~ / ~ }  / f r 2  

-4K2(Y + 1)/f3)9-, (3.8b) 

A?) = 2 / ' ( y ' 9  + 4 f ' ) ,  ( 3 . 8 ~ )  

A t )  = 2 / f  { 262 - (1 - 2K2)j 'Z) . (3.8d) 

The only parameter remaining in this short-time solution is the dimensionless 
absorption parameter K .  We can obtain simplified forms for special values of K .  When 
K = 0, i.e. when the tracer is insoluble in the wall layer, we obtain by inverting ( A  l), 
( A 4 )  the results 

(3.94 

(3.9b) 

in which j: is the nth (strictly) positive root of JL. Since no tracer enters the wall 
layer these results are the same as those based on the fluid phase alone. As is well 
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known, for this case the mean axial position of the tracer moves with the mean fluid 
velocity, and the diffusive component of the dispersion coefficient is as it would be in 
the absence of flow (i.e. unity). The linearly growing part of c$) represents Taylor 
dispersion, which is of course absent in the case of uniform flow. 

If ic is considered to be non-zero but asymptotically small, the passage of tracer 
into the wall layer is very slow, giving rise to a new, long timescale, defined by 

t ,  = K2t. (3.10) 

The dominant contributions to the integrals (3.6) are from a neighbourhood of the 
lower limit of integration, of size I C - ~ .  Evaluating these contributions we obtain 

( >''I 

( t ,  - 12t:I2 + 37r'l2 + ( s t ,  - 3)e4'.r + O(K-~), 
(3.11b) 

in which r = r ( 5 , 4 t K )  in the notation of Abramowitz & Stegun (1972). In this 
approximation the results simplify, being expressible in terms of a set of universal 
functions, with the ic-dependence reducing to a stretching of both the timescale and 
the axial lengthscale by a factor K - ~ .  These universal functions are also independent 
of the assumed flow profile. However, the usefulness of these small-lc approximations 
is somewhat limited, since the short-time solution is valid only up to times of order 
f 2  (or 1-' if the wall layer is very thick). Therefore in practice the approximations 
given by (3.11) will be relevant only when f-' << ic << 1 (or A1/2 << K << 1 for a thick 
wall layer). 

Finally, the case of infinite IC corresponds to perfect absorption of tracer by the 
wall layer (with no desorption into the fluid phase). The solution may be found, 
either directly, or by evaluating the contributions to the integrals in (3.6) from the 
narrow peaks in the integrands that occur near the roots o f f  when K is large. This 

) ( c ( P ) ) ( r )  ( c$))(r) - 1 n-1/2ic-4 4&2 
20 - - T j  

(3.12~) 

(3.12b) 

2ji2)} e-jit, (3 .12~)  

(3.12d) 

where j n  is the nth positive root of Jo. Note that, just as the small-ic limit is not a 
uniform one, the infinite-ic results do not provide a uniformly valid approximation to 
the large-ic behaviour as a function of time. Physically, this is because for finite K ,  no 
matter how large, tracer is desorbed into the fluid phase after its initial absorption; 
when K is infinite, however, the axial position of absorbed tracer is effectively fixed 
for all time. 
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3.3. Long timescale 
As stated above, we assume that the dimensionless quantity G defined by (3.1) is 
asymptotically large, so that that tracer molecules typically take much longer to 
diffuse across the wall layer than across the interior of the tube. The rescaled 
long-time variable reflecting this timescale is z, defined by (3.2). We therefore seek 
a solution on this timescale by fixing z while assuming d > >  1. In order to avoid 
implying that nearly all the tracer passes into the wall layer, we also assume that the 
parameter defined by 

p = rcd (= .P) (3.13) 
is fixed during the G + oc) process. This means that the solution remains valid when the 
equilibrium fractions of tracer in the fluid phase and the wall phase are comparable. 
Detailed consideration shows that the resulting approximation retains its validity for 
large values of p, but breaks down when p is small, of order d-2 or less, when the 
wall layer no longer dominates tracer transport. Thus, it is not applicable when K 

drops to values comparable with, or less than, C3. For example, for the impermeable 
outer boundary condition, the neglect of dispersion in the fluid phase can be shown 
to underestimate the fully developed value of kip) by approximately B K - ~ G - ~  relative 
to its true value. 

The solution for the long timescale is obtained by considering the rescaled versions 
of the Laplace transform inversion integrals for the axial moments, namely 

( ~ J ( ~ ~ ) ( t ' ~ z )  = ( 2 ~ i ) - ' d - ~  (i?i)(r)(G-2a)eaTdo, (3.14) 

where % is, as usual, a contour in the complex plane passing to the right of the 
singularities of the integrand. The poles of the Laplace-transformed moments lie 
along the negative real axis. To obtain the long-time solution, for which z is fixed 
and d >> 1, it is sufficient to consider values of a of order unity (larger values give 
exponentially small contributions). Thus we require a small-s form of the Laplace 
transform; specifically the form for s = k'-'a, with G >> 1 and a fixed. This must be 
inverted with respect to a and multiplied by dP2.  

It is straightforward to expand the general solutions to obtain the required asymp- 
totic forms. From (A 1HA4), we find 

J, 

From (2.24) we deduce that the fluid-phase averages are obtained by setting H = 1 
in these equations (see Appendix B). By inspection of (3.15), at leading order the 
long-time approximations for all three moments are independent of the assumed flow 
profile; physically, this is because radial diffusion in the wall is the rate-limiting 
transport process. Also, for large a, G -, 1 and H + 0 for both the impermeable and 
perfectly absorbing outer boundary conditions. Thus, as we should expect physically, 
the solutions for both cases converge for small values of z, when only a small amount 
of tracer has had time to reach the outer boundary. 

In each case, the leading term of the Laplace transform is regular apart from an 
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infinite series of poles along the negative real axis of the a-plane. Evaluating the 
residues in the normal manner we obtain, firstly for the impermeable outer boundary 
condition, 

( C p  = 1, (3.16~) 

(3.16b) 

a, 

-8 x(t + ;an2 - f;' sec2 ~ , ) a ; ~ f ; ~ e - ~ '  + 0(e2), (3.16~) 
n=l 

as k' + co with p and t fixed, in which 

f, = 1 + 2p sec2 a,, 

and a, is the nth (strictly) positive root of the equation 

a, cos a, + 2p sin a, = 0. 
The results for the perfectly absorbing outer boundary condition are 

a) 

(co)(')= 4p x b;'g;'cosecb, e-bf' + O(C!-~),  
n=O 

+fg; ' (  1 - 2pcosec2b,)cosecb, + OU), 

(3.17) 

(3.18) 

(3.19~) 

(3.19b) 

+;[T + ~b;21[g;1(1 - 4pcosec2b,)cosecb, - bilg,] 

+ib;'cosec2b, + $pb;2g;2[-1 + 2cosec2bn + 16pcosec2b, - 16pcosec4b, 

-12p2cosec4b, + 8p2cosec6bn]cosecbn b;'gL3e-G' + 0(e2), (3.19~) 1 
as l' + co with p and t fixed, in which 

g, = 1 + 2pcosec2b,, (3.20) 
and b, is the nth positive root of the equation 

b, sin b, - 2pcos b, = 0. (3.21) 
The effective transport coefficients at long times, unlike those at short times, 

depend on the dimensionless quantity C! in addition to the dimensionless absorption 
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FIGURE 1. The fraction of tracer remaining in the system, q, calculated from the long-time 

with K = 0, 
approximation (3.19) for the perfectly absorbing outer boundary condition: for L = 10 (- 1 9  

lo-', 1 and co; and for L = 1 (..........- ), with K = 0, lo-', 1 , l O  and 00. 

parameter K. However, given the fact that the timescale is proportional to t2, the 
solution essentially depends only on the single parameter p = K/. 

4. Results 
4.1. The fraction of tracer remaining in the system, and in thefluid phase 

The simplest transport coefficients are q, the fraction of tracer remaining in the system 
(including the wall layer), and q f ,  the fraction remaining in the fluid phase alone, 
which are calculated by solving the two-dimensional diffusion equation governing Co 
in $2.2 (and are therefore independent of the flow profile assumed). The numerical 
results for these two coefficients provide a convenient illustration of the asymptotic 
structure of the solution, with its two distinct timescales. 

Figure 1 shows the time-dependence of q. On the short timescale, and for the 
impermeable boundary condition at all times, q is equal to unity. The long-time 
results for the perfectly absorbing outer boundary condition are shown in figure 1 for 
a range of values of K, with t = 1 and 10. In every case q decreases monotonically 
towards zero with increasing time, and the onset of the decrease indicates the transition 
from the short- to the long-time rigime. Comparison of the solutions for / = 1 and 
10 illustrates how the long-time approximations scale with t .  As demonstrated in $3.3, 
they belong to a single family of curves, whose timescales are proportional to t2, and 
which are parametrized by p = K/, so that different curves having the same shape 
correspond to values of K that are inversely proportional to t .  Note the sensitivity to 
4' implied by these scalings: e.g. a change in wall layer thickness by a factor of 10 
would change the timescale by two orders of magnitude. Most of the results presented 
below are for t = 10, which illustrates the separation of timescales and also permits 
comparison with the numerical results of Davidson & Schroter (1983). 

For the fraction of tracer remaining in the fluid phase, q f ,  because tracer begins to 
move into the wall layer immediately there is a non-trivial variation on the short as 
well as the long timescale. Figure 2 shows qf as a function of time when K = lo-'. 
The short-time solution, which depends only on K, is shown together with long- 
time solutions for four different values of /, for both impermeable and perfectly 
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RGURE 2. The fraction of tracer remaining in the fluid phase, q f ,  for K = lo-'. The short-time 
solution (- ), calculated from (Bl), is shown together with long-time solutions (-...-, 
impermeable outer boundary condition; - - - - , perfectly absorbing outer boundary condition), 
calculated from (BS), (B6), for four values of d :  1,5,10 and 20. For each value of d ,  both long-time 
solutions diverge from the short-time solution at around the same time. 

absorbing outer boundary conditions. As is always so, the long-time solutions for 
both conditions merge with each other as t decreases below t2, and then match very 
smoothly to the short-time solution. For 41, although the asymptotic expansions used 
are strictly only valid for t >> 1, in practice they give reasonably accurate results 
even when t = 1. Comparison with figure 1 shows that matching with the short-time 
solutions occurs later for the fluid-based coefficient than for that based on both 
phases. This is because the integrals based on both phases begin to change when 
molecules have diffused from the inner to the outer boundary of the wall layer, but 
the fluid-phase integrals are not affected until molecules have diffused back to the 
inner boundary again. Therefore molecules are required to diffuse twice the distance 
to affect the fluid-phase average, and since the time for diffusion scales as the square 
of the distance, the transition is later by roughly a factor of four. This scaling is 
borne out by the results shown both here and below. At long times, for the perfectly 
absorbing outer boundary condition, qf tends to zero as all the tracer moves out of the 
fluid phase. However, for the impermeable outer boundary condition, an equilibrium 
partition between the phases is approached, with qf tending to (1 + 2 ~ t ) - l  in the 
long-time approximation. 

Figure 3 illustrates the behaviour of qf for a range of values of K. Here we 
show the short-time solution, and for K < 1 the long-time solutions for both outer 
boundary conditions when t'= 10 (for larger values of K, by the time the large-t 
solution becomes valid, qf is too small to be clearly seen). As for the other transport 
coefficients shown below, provided K is not too large the long-time solutions are 
a good approximation throughout the range of time, matching with the short-time 
curves slightly earlier when K is larger. Note that the results for K = 10 differ little 
from those for infinite K. In the latter case uptake by the wall layer is extremely rapid, 
with 99% of tracer having left the fluid phase by t = 0.74. 

4.2. Transport coefficients based on Jluid-phase averages 
We consider next the behaviour of transport coefficients based on moments of the 
axial concentration distribution in the fluid phase alone, as used by previous workers 
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FIGURE 3. The fraction of tracer remaining in the fluid phase, q f ,  for K = lop3, lO-I, 1 , l O  and 
co. The short-time solutions (- ), calculated from (Bl), (B4), are shown, and for the cases with 
K < 1 we also show longtime solutions (-. . .-, impermeable outer boundary condition; - - - - 
perfectly absorbing outer boundary condition), calculated from (B5), (B6), for I = 10. Below about 
t = 10, each pair of long-time solutions coincides, and for clarity only the perfectly absorbing case 
is shown. 

(Davidson & Schroter 1983). Figure 4 shows the apparent convection velocity due to 
Poiseuille flow, based on fluid-phase averages, uy),  for a range of values of K. There 
is close agreement between the combined short-time and long-time (impermeable 
outer boundary condition) results and the corresponding curves shown in figure 3 
of Davidson & Schroter (1983), in which the pronounced ‘kinks’ correspond to the 
transition between the short- and long-time solutions, when the influence of the outer 
boundary of the wall layer becomes important. The relationship between the short- 
and long-time solutions is similar to that in figure 3, with close agreement for smaller 
K ,  but divergence for larger K. Unlike the short-time approximation (in which all 
the tracer is eventually taken up by the stationary wall layer), each of the long-time 
solutions tends to a positive limit as t + 00. For the impermeable outer boundary 
condition, the limit is equal to the limiting fraction of tracer in the fluid phase, 
i.e. (1  + 2 ~ 8 ) - ~  in this approximation. The limiting value for the perfectly absorbing 
boundary condition, 2gc1, is larger: because of removal at the outside of the wall 
layer, proportionately more of the tracer remaining in the system lies in the moving 
fluid (cf. Lungu & Moffatt 1982). 

Other features of the predictions reflect the fact that uy’ is based on moments of 
concentration in the fluid phase only, and thus, in effect, is calculated for different 
sets of tracer molecules at different times. For example, at short times uy’ rises above 
unity, i.e. the apparent convection velocity for tracer is larger than the average flow 
velocity. This is because, in the early stages, tracer molecules in the slower-moving 
fluid near the wall layer are moving out of the fluid phase and thus leaving the 
averages. The average position is progressively dominated by molecules near the tube 
axis, where the flow is fastest (cf. Davidson & Schroter 1983). The initial rise of dP) 
is followed by a dramatic fall before t = 1. This is due to the desorption from t ie  
wall layer of tracer absorbed earlier, which brings back into the averages molecules 
that have been delayed while in the wall layer, whereas those that have spent longer 
in the fluid phase, and have thus been convected furthest, continue to be absorbed 
and to leave the averages. The resulting decrease in uy’ is stronger for larger K, and 
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FIGURE 4. The apparent convection velocity due to Poiseuille flow, based on fluid-phase averages, uy’, 
for K = 1,10,1@ and co. The short-time solutions (- ), calculated from (Bl), 
are shown, and for the cases with K < 1 we also show long-time solutions (--. . --, impermeable 
outer boundary condition; - - - -, perfectly absorbing outer boundary condition), calculated from 
(B5), (B6), for / = 10. Below about t = 10, each pair of long-time solutions coincides, and for clarity 
only the perfectly absorbing case is shown. 

when K = 10 it is actually sufficient to make uy’ negative for a short period around 
t = 1. The case of infinite K is singular in the sense that tracer is never desorbed from 
the wall layer, so that there is no tendency for uy) to decrease; instead, it increases 
monotonically to a limiting value greater than unity, with an exponentially decreasing 
amount of tracer remaining in the fluid phase, and the highest concentration at the 
axis of the tube, where the fluid velocity is highest. 

Many of the same features are present in the results (not shown) for the effective 
dispersion coefficients, k$) and k d f .  Once again, for higher K, both these coefficients, 
like uy’, become negative just before t = 1. In each case the reason is similar to that 
descnbed above: tracer absorbed earlier, which has not spread axially while in the 
wall layer, re-enters the fluid phase, while the more dispersed tracer still in the fluid 
phase continues to be absorbed; for sufficiently high K, this actually reduces both 
components of the axial spread of the tracer in the fluid phase. 

4.3. Transport coeflcients based on averages over both phases (Poiseuille $ow) 

The paradoxical behaviour described in $4.2, resulting from the use of fluid-phase- 
based averages of tracer concentration, suggests that tracer transport will be more 
reasonably described by coefficients defined in terms of both fluid- and wall-layer 
concentrations. This means that for the impermeable outer boundary condition the 
effective transport coefficients reflect the movement of all the tracer molecules initially 
released, rather than expressing a mixture of axial transport and effects of exchange 
between the phases. For the perfectly absorbing outer boundary condition, although 
tracer does leave the averages, it does not subsequently re-enter, so that paradoxical 
behaviour is minimized by including the contribution of the wall layer. Implications 
for comparison with experiment are discussed in $5. 

Figure 5 illustrates the apparent convection velocity due to Poiseuille flow based 
on averages including both phases, ub), for a range of values of K, with long- 
time results for both impermeable and perfectly absorbing boundary conditions. In 
contrast to the paradoxical behaviour in figure 4, for the impermeable outer boundary 
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FIGURE 5. The apparent convection velocity due to Poiseuille flow, based on averages over both 
phases, u@), for K = lop2, lopL, 1 , l O  and co. The short-time solutions (- ), calculated 
from (3.6), are shown, and for the cases with K < 1 we also show long-time solutions 
impermeable outer boundary condition; - - - - , perfectly absorbing outer boundary condition), 
calculated from (3.16), (3.19), for G = 10. Below about t = 10, each pair of long-time solutions 
coincides, and for clarity only the perfectly absorbing case is shown. 
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FIGURE 6. The convective component of the dispersion coefficient due to Poiseuille flow, based 
on averages over both phases, /cp) , for K = 0, lo-*, lO-l, 1,lO and 00. Only the short-time 
solutions, calculated from (3.6), are shown. 

condition u(P) decreases monotonically with time. For the perfectly absorbing outer 
boundary condition, when K is small there remains a barely visible minimum near 
the transition to the long-time rkgime, probably due to a much weaker version of 
the effects discussed in w.2. Also, the large-rc solutions now approach the infinite-ic 
curve without exhibiting the large deviations shown in figure 4. Other aspects of the 
solutions are qualitatively as discussed in $4.2. In particular, the long-time limit of 
the apparent convection velocity for the impermeable outer boundary condition is 
the same as that based on the fluid phase alone, and as before is smaller than that 
for the perfectly absorbing outer boundary condition. 

Figure 6 shows results for the convective component of the dispersion coefficient 
due to Poiseuille flow, based on averages over both phases, kp), in the short-time 
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FIGURE 7. The convective component of the dispersion coefficient due to Poiseuille flow, based on 
averages over both phases, k?), Log-log plot for moderate K (0,10-3,10-1 and lo), to show short-time 
solutions (- ), calculated from (3.6), together with long-time solutions (--. . .- impermeable 
outer boundary condition; - - - - perfectly absorbing outer boundary condition), calculated from 
(3.16), (3.19), for G = 10. Below about t = 10, each pair of long-time solutions coincides, and for 
clarity only the perfectly absorbing case is shown. 

approximation only. The K = 0 curve shows the time-development of Taylor dispersion 
(as calculated by Gill & Sankarasubramanian 1970). For all values of K greater than 
zero, the short-time solution increases from zero initially to reach a maximum, then 
decreases towards zero again for long times, as all the tracer tends to enter the 
stationary wall layer. For small values of K, the curves are given approximately by a 
stretched version of a universal solution (3.11), with a long timescale and a large rate 
of dispersion, both proportional to K - ~ .  The long timescale represents the slowness 
of tracer movement into the wall layer when K is small. (Note that this small-rc 
approximation is only relevant in practice if its timescale is shorter than that of 
the long-time solution, which reflects the time taken to diffuse across the wall layer, 
i.e. if 1 << rc-l << L'. In terms of dimensional parameters this requirement could be 
satisfied, for example, for a given wall layer thickness if D , / D  + 0 and f i  + 03 with 

The relationship of the short-time behaviour of k:P) with the long-time solutions is 
shown in figure 7, as a logarithmic plot. Both the long-time solutions tend to constant 
values as t -+ co. For the impermeable outer boundary condition, the limiting value 
is the same as that based on fluid-phase averages (cf. Davidson & Schroter 1983). 
When K is small, this is higher than for the perfectly absorbing outer boundary 
condition, whereas for higher K, as shown by the K = 10 curve, the opposite is true. 
This behaviour can be understood qualitatively as follows. In general, the convective 
component of dispersion arises from the distribution of tracer between parts of the 
system moving with different velocities; for the cases shown, the important aspect of 
this distribution is the partition between the stationary wall layer and the moving fluid 
phase. The resulting dispersion rate is greatest at some point intermediate between 
the two extreme cases in which all the tracer lies in one phase or the other. For 
example, for the impermeable outer boundary condition in this approximation it is 
easily shown that the large-t limit of kLP) is maximized when p = i ,  which corresponds 
to two thirds of the tracer being in the fluid phase. On the one hand, when K is small, 
kip) is lower for the perfectly absorbing outer boundary condition, because only a 

fi2oW/o << 1.) 
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small fraction of the tracer is in the wall layer, and absorption lowers this fraction 
still further, moving the system further away from the optimal partition between 
the two phases. This effect is reinforced because the tracer being absorbed at the 
outer boundary of the wall layer lies predominantly to the rear of the rest, tending 
to reduce further the axial spread. But on the other hand, for higher values of K ,  

most of the tracer lies in the wall layer. This means that k?) is much smaller for 
both outer boundary conditions, but now the perfectly absorbing condition moves 
the system closer to the optimal partition and gives a larger rate of dispersion than 
in the impermeable case. 

Another respect in which figure 7 differs from the results already discussed is that 
the long-time approximations are less accurate for shorter times. The close agreement 
at small values of K noted for qf and u(P) is absent (although the discrepancy 
is accentuated by the logarithmic plot). This is because for small K the short- 
time variation is dominated by the tracer remaining in the fluid phase, and is 
therefore highly dependent on the flow profile, whereas the leading-order long-time 
approximations reflect the evolution of wall-layer concentrations. The continuation 
of these approximations to shorter times accordingly fails to agree closely with the 
Poiseuille-flow results (although they do match closely the results for a uniform flow 
profile, shown below in figure 10). For the smallest value of K considered, the long- 
time solution becomes inaccurate even at longer times because, as discussed in 93.3, 
transport in the wall layer ceases to dominate even the long-time behaviour when 7cf3 
drops to order unity. 

As noted in 93.1, the results for the diffusive component of the dispersion coefficient, 
kd, are identical to those for the apparent convection velocity due to uniform flow, 
u(') (shown in figure 8 below). In every respect the behaviour of kd is qualitatively 
similar to that of the apparent convection velocity, u(P) (shown in figure 5) ,  because 
the dispersive action of axial diffusion is analogous to the convective action of flow. 

4.4. Transport coeficients based on a uniform flow profle 
Finally, we examine the sensitivity of our results to the flow profile by comparing the 
values calculated above for Poiseuille flow with those obtained when the fluid moves 
with a uniform axial velocity. As already noted, the fraction of tracer remaining 
in the system, q,  and the diffusive component of the dispersion coefficient, kd, are 
independent of the flow profile assumed. In addition, the apparent convection velocity 
for uniform flow, d'), is numerically equal to kd. Moreover, as shown in 53.3, the 
long-time solutions are independent of the flow profile, at leading order, for every 
coefficient. 

due to Poiseuille and uniform flow profiles, demonstrating the difference in tracer 
convection due to the two flow profiles when the total flow rates are the same. For 
each value of K the two short-time solutions are shown, together with the long-time 
solutions, which are common to both flow profiles. When K is not too large, there is 
close agreement between the two curves throughout the range of time, although u(P) is 
a little larger than u(') due to the lowering of concentration near the interface, which 
for Poiseuille flow is a slower-moving region. For K = lo-', the difference between u(P) 
and u(') is always less than about 0.02, i.e. the apparent convection velocities differ 
by less than 2% of the average fluid velocity. The long-time curves match smoothly 
to the short-time results for both profiles; in fact when K is small, comparison with 
figure 5 shows that the long-time results and the uniform-flow curve lie very close to 
each other at all times. For larger K the difference between u(P) and u(') is greater 

Figure 8 shows the comparison of the apparent convection velocities u(P) and 
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FIGURE 8. The apparent convection velocity, based on averages over both phases: comparison of 
results for Poiseuille flow (&)) and uniform flow (u'")). Curves are shown for K = lo@, 10 and 
co. The short-time solutions (- , Poiseuille flow; .-.--, uniform flow), calculated from (3.6), 
are shown, and for the cases with finite K we also show long-time solutions (--...-- , impermeable 
outer boundary condition; - - - -, perfectly absorbing outer boundary condition), calculated from 
(3.16), (3.19), for L = 10 (these are independent of the axial flow profile assumed; they are shown 
for t 2 1 when K < lo-[, with the perfectly absorbing case shown for the whole range of time when 
K = 10). 
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FIGURE 9. The convective component of the dispersion coefficient, based on averages over both 
phases: comparison of results for Poiseuille flow ) and uniform flow (k?).----). Curves 
are shown for K = 0, lo-', 10 and co. Only the short-time solutions, calculated from (3.6), are 
shown. 

(and the close agreement between the long-time and the uniform-flow results is lost). 
Note, however, that even when K is infinite, the results for the two flow profiles merge 
by t = 1. Thus, at worst the apparent convection velocity depends significantly on 
the flow profile only in the earliest stages, and for a wide range of K it is virtually 
insensitive to the flow field. 

In Figs 9 and 10 we show results for the convective components of the dispersion 
coefficient, kp) and kp), for Poiseuille and uniform flow profiles. In figure 9, the 
short-time results are shown up to t = 10 for a range of values of K. At early times, 
when transport in the fluid phase is dominant, kp) is much smaller than kip) ; indeed, 
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FIGURE 10. The convective component of the dispersion coefficient, based on averages over both 
phases: comparison of results for Poiseuille flow (kLP)) and uniform flow (kp)).  Log-log plot for 
moderate K (0,10-3,10-1 and lo), to show short-time solutions (- Poiseuille flow; --*- 

uniform flow), calculated from (3.6), together with long-time solutions (--. . .~ impermeable outer 
boundary condition; - - - - perfectly absorbing outer boundary condition), calculated from (3.16), 
(3.19), for G = 10 (these are independent of the axial flow profile assumed; they are shown for 
t 2 10 when K = and for t 2 1 when K 2 lo-'). 

when K = 0, kp) is zero. For small, non-zero K, however, at longer times both kp) 
and krP) tend to equality with the universal solution, given by (3.11), whose timescale 
and magnitude are both large and of order K - ~ .  For larger values of K, kp) reaches a 
peak at about the same time as k$'), but with roughly half the magnitude, with the 
two curves tending to equality at longer times, though not as rapidly as the apparent 
convection velocities shown in figure 8. 

In figure 10 the short-time solutions for k$) and kp), together with the long-time 
solutions (common to both flow profiles), are shown as a logarithmic plot, for a 
range of values of K. Provided K is not too large, the long-time solutions merge 
smoothly with the short-time uniform-flow curves (but not, as noted above, those 
for Poiseuille flow). The comparison of predictions for k, based on the two flow 
profiles can be summarized as follows. On the one hand, when IC is large, in the 
period when dispersion is fastest transport in the fluid phase is important, so the 
predictions based on the two profiles differ significantly, but at longer times they 
decrease towards a common limit. On the other, when K is small (i.e. comparable with 
L'-~), transport in the fluid phase is important in determining k, even at long times, 
so that neither the short-time results for uniform flow nor the long-time results are 
expected to approximate the true solution for Poiseuille flow. For intermediate values 
of K, however, kp) differs from k$) by an amount that is always small compared 
with the fully developed value. For example, for K = lo-' the error incurred by the 
uniform-flow approximation is always less than about 3% of the limiting value as 
t + 00. 

5. Discussion 
In this section we draw from our results some general conclusions, which we expect 

to be applicable, at least qualitatively, to a wide range of systems in which transport 
by convection and diffusion in a fluid phase is combined with exchange with a 
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stationary phase in which diffusion is much slower. The central feature revealed by 
the analysis is that, as a consequence of the assumption that / = hD1l2/aD;l2 >> 1, the 
development of dispersion takes place over two widely separated timescales, for each 
of which the mathematical solution can be approximated by a simplified form. The 
shorter timescale, a2/D,  reflects the time taken for tracer molecules to diffuse across 
the fluid phase, and is the same as for the development of Taylor dispersion. During 
this stage, at leading order, the influence of the wall layer is fully characterized by the 
single dimensionless parameter, K = (Dw/D)1/2f l ;  the thickness of the wall layer, and 
the prevailing conditions at its outer boundary, do not affect the solution. The second, 
much longer, timescale, h2/Dw, reflects the time for tracer to diffuse across the wall 
layer. Unless uptake is very small, on this timescale transport is characterized by the 
single dimensionless parameter p = flh/a, implying that, at leading order, transport is 
unaffected by the form of the fluid flow profile, and depends on flow only through the 
cross-sectionally averaged fluid velocity. In dimensional terms, the requirement for 
this to be true is that fl  >> a3Dw/h3D, which with D ,  << D is a much weaker condition 
than flh >> a :  thus tracer diffusion in the wall layer can be rate-determining even if 
only a relatively small fraction of the tracer is within the wall layer at any time. 

An important conclusion is that if, as in Davidson & Schroter's (1983) analysis, 
transport coefficients are calculated on the basis of fluid-phase concentrations alone, 
they behave in a complicated and paradoxical manner, and even become temporarily 
negative if uptake is sufficiently large ($4.2). The parameter range where this is 
possible includes, for example, gases of interest to lung toxicologists, for which the 
value of f l  can be as high as 1500 (for ethanol). Assuming D , / D  is roughly this 
would imply K = 15, which is within the range where the fluid-phase-based coefficients 
behave paradoxically. This behaviour can be avoided if tracer within the wall layer 
is also taken into account. Clearly, for purposes of comparison with experiment, the 
nature of the measurements determines which of the two methods is appropriate. If 
one measures the instantaneous spatial concentration distribution in the fluid phase 
alone, fluid-phase averages are obviously required. Similarly, averages over both 
phases are appropriate for comparison with measurements of the spatial distribution 
within both phases. However, in many experiments what is actually measured is the 
time-varying concentration at a fixed position in the system. Moreover, in modelling 
any transport problem in a branching network of tubes the same problem arises. For 
example, to model gas transport and uptake in the bronchial tree during inspiration, 
we require not the axial distribution in an infinitely long tube, but the response 
as a function of time at fixed positions in each airway (including the efflux from 
its distal end) resulting from a spec&ed time-varying influx at the proximal end. 
One of our main conclusions, as discussed below, is that such measurements cannot 
be compared with predictions derived from either choice of spatial averages. In 
particular, it is evident that a negative effective velocity could never be observed by 
making concentration measurements at fixed positions within this system. 

A comparison of the results based on Poiseuille flow with those based on a hypo- 
thetical uniform flow profile shows that, in many cases, the transport characteristics 
are relatively insensitive to the flow profile. For example, provided uptake is not too 
large (say for K < lO-l), the two values of the apparent tracer convection velocity 
differ by only a few per cent of the mean fluid velocity. For the dispersion coefficient, 
the situation is more complicated because, as stated above, when K is very small 
transport is dominated by convection in the fluid phase, which means that k, is 
sensitive to the flow profile. However, for moderate values of K (e.g. K = 10-l) the 
differences between the results for the two flow profiles amount to only a few per 
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cent of the fully developed value. We conclude that in many circumstances tracer 
transport is relatively insensitive to the details of the axial flow field. Of course, in 
many circumstances the flow field will include components transverse to the axis of 
the tube (e.g. in developing flow, or in the presence of curvature or bifurcations). 
Our results suggest that these transverse components will affect only the short-time 
development of dispersion (which in any case is sensitive to the initial radial concen- 
tration distribution (Aris 1956)), and that the long-time solution calculated here will 
still apply. Indeed, for fully developed dispersion in a curved tube with a wall layer 
like the one considered here, the recent numerical calculations of Jayaraman, Pedley 
& Goyal (1995) have directly demonstrated that the departure from Poiseuille flow 
has only a small effect. 

When interpreting the results presented above, it must be borne in mind that 
they contain information only about axial moments of the tracer distribution. The 
method of moments has been widely used, because in addition to having a clear 
physical interpretation, at long times the moments specify the asymptotic form of 
the axial concentration distribution, which is a translating, spreading and decaying 
Gaussian (cf. Lungu & Moffatt 1982). However, at shorter times, the concentration 
is not approximately Gaussian, and the information presented by the moments is 
far less comprehensive. The timescale for the development of the Gaussian form 
can be increased by orders of magnitude in the presence of a wall layer in which 
the tracer is soluble, causing the tracer distribution to be extremely skewed, with a 
long tail at the rear due to tracer having been delayed by the wall layer (see (5.1) 
below). The difficulty is exacerbated because, as discussed above, it is often desirable 
to know the time-variation of concentration at a fixed point rather than its spatial 
variation at a fixed time. If the concentration distribution is non-Gaussian, there is 
no straightforward equivalence between the two. 

The implications for transport in the lung can be illustrated by comparing the time 
for passage through an individual airway with that required for the development 
of dispersion. For an insoluble tracer, the convective component of the dispersion 
coefficient reaches 95% of its fully developed value by the dimensionless time t NN 0.2. 
We can use the recent geometrical analysis of the bronchial tree by Phillips, Kaye & 
Schroter (1994) to estimate the values of t based on the average times for inspired air 
to pass through individual airways, assuming a steady rate of inspiration of 20 1 min-' 
and a diffusion coefficient of lo-' cm2sP1. The value o f t  estimated in this way reaches 
0.2 only in airways of diameter 3.5 mm or less. This means that, even for an insoluble 
tracer, dispersion cannot be considered to be fully developed in the several hundred 
largest conducting airways. For soluble tracers, the timescale for development is much 
larger, of the order of e2. In Davidson & Schroter's model / = 10, which indicates a 
requirement that t = 100 or more, implying that dispersion is not fully developed in 
any of the conducting airways of the lung. 

A simple example which illustrates both the departure from a Gaussian spatial 
distribution and the dramatic difference between moments based on space- and time- 
variation can be provided by considering the solution for a uniform flow profile, for 
times that are long, but not sufficiently long that the outer boundary of the wall layer 
has an influence. The resulting approximation is 

C(T, z, t )  - n- ' /2~z t -3 /2  exp(--K2z2t-') (5.1) 
for 1 << t - z2 << e2, or in dimensional terms, a 2 / D  << T - DZ2/Via2  << h2/D,. 
Viewed as a function of z, this is clearly far from Gaussian, but has well-defined 
moments whose rates of change agree with the large-t form of the (fluid-phase based) 
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short-time results given in Appendix B(gB.1). These moments reflect a distribution 
whose lengthscale is proportional to c 1 t 1 l 2 .  However, viewed as a function of time 
at fixed position, not only is the concentration non-Gaussian, but the integrals for 
all the moments of time, except the zeroth, diverge. This means that the mean and 
variance of the downstream concentration distribution as a function of time are 
infinite. It is only the fact that this approximation breaks down at longer times, when 
the influence of the outer boundary is felt, that enables us to define these quantities 
meaningfully. This simple example demonstrates that, in the presence of a wall layer, 
in practical terms the standard dispersion formulation gives very little information 
about the temporal concentration distribution which can actually be measured. 
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Appendix A. General solution 
The functions required to calculate axial moments of tracer concentration, zi (for 

i = 0,l and 20), satisfy the governing equations (2.20) in the fluid phase, subject to 
the boundary conditions (2.22) at the interface with the wall layer; the solution for 
the remaining function, Czl, can be expressed in terms of these functions and their 
s-derivatives. Solutions for the li, and expressions for the quantities G and H defined 
by (2.23) and (2.25), can be derived explicitly in terms of modified Bessel functions. 

After lengthy manipulation, the following expressions for the required averages are 
obtained : 

(A l a )  

(A 1b) 

( E 0 ) @ )  = --2~GHs-'/~Col~=1- + S-', 

(i$')(r) = -2~GHs-'/~$)l,=l- + s-2 - ~ K G S - ~ / ~ A - ' ( S ' / ~ ~  - 2f), 

(A 1J) ( a s  

9 = ZO(S'/~), 9' = Z;(s'I2), A = KGY + Y', (A 2) 

1 a 
+22 S-'(Zo):' + 2Ks-'-(GHs'/2)Zo~r=1- , 

in which 

where ZO is a modified Bessel function, G is given by (3.3), H by (3.5), the fluid-phase 



+ (2 - 133s + 204)f2}  

16 2 2 -4 -3 - 7“ G s A { s3/’Y3 + (s2 - :~)9~9’ - (s3/2 - S ’ / ~ ) Y ~ ’ ~  - t (s  - 1) 

Appendix B. Solutions for integrals based on the fluid phase only 
B.l. Short-time solution 

The solutions corresponding to (3.6)-(3.8), but for moments based on integration over 
the fluid phase alone, are 

+ f ~ ~ y - ’ E - ~ {  yf2 + ~ ‘ / ~ f f ’  + (y + 1)ft2} f f ’  e-”‘dy, (B lb) ) 
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where 

The results corresponding to (3.12), for infinite K, are 
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Note the particularly simple form taken by the uniform-profile results. The apparent 
convection velocity uy' is unity, the convective component of the dispersion coefficient 
is zero, and the diffusive component is unity. These simplifications arise because when 
IC is infinite no tracer re-enters the fluid phase after absorption. 

B.2. Long-time solution 
The solutions corresponding to (3.16), (3.19), but for moments based on integration 
over the fluid phase alone, are, for the impermeable outer boundary condition, 

00 

n=l  

+,uai2 fL2[2 - 3 sec2 a,, - 8p sec2 a,, + 6 p  sec4 a,,] sec2 a,, fi3e-dr 1 )  
and for the perfectly absorbing outer boundary condition, 

n=O 

OD 

= 4e2 {z  + ;bi2 - g;'cosec2b,,} gL2edbt' + 0(1), 
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+pb, 2 g ,  -2 [2 - 3cosec2b, - Spcosec'b, + 6 p ~ o s e ~ ~ b , ] c o s e ~ ~ b , , } g ~ ~ e - ~ ~ ~  
+0(f2). (B 6c) 
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